مدلی برای پیش بینی آسیب پذیری تحصیلی در مقطع کارشناسی مبتنی بر شبکه عصبی
نویسندگان
چکیده مقاله:
هدف پژوهش حاضر، توسعه مدلی برای پیشبینی شرایط اخراج آموزشی دانشجویان مقطع کارشناسی رشتههای مهندسی بوده که به روش دادهکاوی و با استفاده از الگوریتم شبکه عصبی به اجرا درآمده است. جامعه آماری، دربرگیرنده کلیه پذیرفتهشدگان سالهای 1387 لغایت 1390 در سه مورد از دانشگاههای فنی و مهندسی کشور بوده است. دادههای پژوهش با بهرهبرداری مستقیم از سیستمهای آموزش هر سه دانشگاه در مدلسازی وارد شدند. نتایج حاکی از آن است که با بهرهگیری از دادههای موجود در سیستمهای حوزه آموزش دانشگاهها و به خدمت گرفتن شبکه عصبی میتوان با صحت بیش از 95 درصد نسبت به پیشبینی وضعیت تحصیلی یکایک دانشجویان اقدام نمود. کارآئی مدلهای حاصله در دانشگاههای مورد مطالعه، به ترتیب برابر 0.72، 0.556و 0.565 حاصل گردیدند. معدل کل، تعداد واحدهای گذرانده، تعداد نیمسال های مبادرت به فعالیتهای فوق برنامه و تعداد نیمسالهای مشروطی قبلی به عنوان به عنوان موثرترین متغیرهای پیشبین، توسط شبکه عصبی تشخیص داده شدند.
منابع مشابه
شبکه های عصبی مصنوعی : مدلی برای پیش بینی
با توجه به محدودیتها و ابهامهای موجود در مدلهای متداول آماری مانند از دست دادن دادههای مربوط به تعاملهای پیچیده و غیرخطی بین سازههای روانشناختی و برخی مفروضهها مانند همگونی واریـانسها و توزیع نرمال، پژوهش حاضر توانایی مدلهای شبکههای عصبی مصنوعی را برای مطالعات پیشبینی بررسی کرد. گروه نمونهای شامل 456 دانش ـ آموز پسر سال سوم دبیرستان پرسشنامه شخصیتی کالیفرنیا (cpi؛ گاف، 1975) و پرسشنـام...
متن کاملترکیب شبکه های عصبی برای پیش بینی قیمت سهام
در این مقاله، یک مدل ابتکاری با ترکیب شبکه های عصبی مصنوعی (ANN) برای پیش بینی رفتار قیمت سهام پیشنهاد و اجرا می شود. این مدل ترکیبی، به صورت ساختار دو طبقه می باشد: شبکه های عصبی طبقه اول یا پیشگوهای پایه (Base Predictor) مسئول پیش بینی روزانه داده ها با ویژگی مختلف یک سهام می باشند و در طبقه دوم، شبکه دیگر، به عنوان ترکیب کننده پیش بینی نهایی را با بررسی و آنالیز اطلاعات پیشگوهای طبقه اول انج...
متن کاملارزیابی روشهای پیش بینی قمیت سهام و ارائه مدلی غیرخطی بر اساس شبکه های عصبی
در این مقاله با استفاده از اطلاعات سری زمانی قیمت و بازده سهام چند شرکت در بازار بورس تهران، به پیش بینی قیمت سهام و نیز ارائه مدل بهینه پرداخته می شود. روشهای پیش بینی مورد استفاده در تحقیق، به سه دسته تقسیم شده اند: روشهای پیش بینی براساس مدلهای خطی (کوتاه مدت و بلندمدت)، روشهای پیش بینی براساس مدلهای غیرخطی (شبکه های عصبی غیرخطی) و مدل شبکه عصبی با ساختار پیشنهادی، در هر مورد نتایج به دست آم...
متن کاملکاربرد شبکه عصبی مبتنی بر الگوریتم ژنتیک در پیش بینی تقاضای بلندمدت انرژی
پیشبینی تقاضای انرژی جهت عرضه به موقع، تنظیم بازار، هدفگذاری میزان صادرات و ایجاد امنیت انرژی اهمیت ویژهای دارد. روشهای مختلفی برای پیشبینی تقاضای انرژی معرفی شده است که در این بین با توجه به روند غیرخطی و پرنوسان تقاضای انرژی، تکنیکهای غیرخطی نتایج مطلوبتری داشته است. شبکههای عصبی و الگوریتم ژنتیک از مهمترین و پرکاربردترین تکنیکهای غیرخطی در این زمینه میباشند که هر یک نقاط ضعف و قوت خ...
متن کاملرویکردی نو در بررسی پیش بینی پذیری ترافیک شهری مبتنی بر تئوری آشوب و پیش بینی جریان ترافیک شهر مشهد مبتنی بر سیستم فازی- عصبی تطبیقی چندگانه
پیش بینی کوتاه مدت پارامترهای ترافیکی مانند جریان ترافیک، سرعت و ازدحام، دارای اهمیت بسیاری در پژوهشهای حوزه سیستمهای حمل ونقل هوشمند مدرن است. در این مقاله، ابتدا با بکارگیری تئوری آشوب به بررسی پیشبینی پذیری جریان ترافیک شهری پرداخته شده و غیرتصادفی بودن سری زمانی حجم ترافیک مورد بررسی قرار گرفته است. سپس، در حوزه پیشبینی، با توجه به این نکته که یکی از مهمترین مشکلات در هنگام پیشبینی وضعی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 13
صفحات 8- 27
تاریخ انتشار 2018-08-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023